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We examine the solution of a game problem of encounter [l] and we investigate 
its stability with respect to errors in the measurement of the game’s current posi- 
tion. We describe a modification of the extremal strategy, guaranteeing a stable 
encounter with the target. We present examples illustrating the proposed control 
method. 

Let us consider the controllable system 

z’ = f (t, 5, u, v) (1) 

Here z is the phase vector; u, v are the controls of the first and second players, subject 

to the constraints 
u E P, VEQ 

where P and Q are compacta. We accept that the function f is continuous in all argu- 

ments and satisfies the local Lipschitz condition in 5 and the inequality 

II f (t, 2, u, v) II G cp (1 + II 2 II> 

where I I 2 I I is the Euclidean norm of vector S; ‘p is a constant. 
We shall solve the first player’s game problem of encounter [l] with a set M under 

the condition {t, LC [t]} E N. Here M and N are given closed sets in the space of 

{t, z}. We examine the problem in the framework of mixed strategies U + lr (du; t, 
Z) and v + v (dv; t, z), treating them and the motions 5 [t] generated by them as 
in fl]. We note that in [l] the player’s mixed strategies U and Y are identified with 
nonsingle-valued transformations of the {t, x) -space onto sets of probability measure 

{P (du)1 and (v (dv)}, normed on compacta P and CJ , respectively, while here the stra- 
tegies are defined assingle-valued functions U + p (du; t, z) and L + v (dv, t, x). How- 
ever, the difference indicated is insignificant, and all the results of Cl] remain valid for 
the single-valued strategies to be considered here. 

From [l] it follows that in order to solve the given problem of the encounter of all 
motions z [t] = 5 [t, to, x,,, U”] with M inside fi not later than at some instant 
0 > t,,it is sufficient to construct a closed set W(O) c N, u-stable relative to il4, 
containing the initial position {t,, ZO} and terminating on M at the instant 6. In what 
follows, this set 

W(@):[W (t, 6), to< t f 61 (3 

is called a stable bridge in the (t, X} -space. In particular, according to El], the role 
of the stable bridge l+‘(a) can be played by the set W of position absorption of target 
M at the instant 6. The strategy u, + CL, (du; t, x), extremal to the stable bridge 
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I$‘(@) also is that strategy U”, which solves the problem. 

These formal assertions are meaningfully revealed in the stochastic approximation 
scheme forming the random motions X* [t, t,,, 
step 6 = supi (ti+i---r.i) (i = 0,l. . . .) 

x0, U”l which for a sufficiently small 
encounter, with a probability p arbitrarily 

close to one, the a-neighborhood of M inside the &-neighborhood of N at the instant 6 , 
where E > 0 can be chosen arbitrarily small [Z, 31, Here lti, ri+i) (i := 0, 1, . . .) 
are half-open intervals on which the random controls u ]r] are constant. However, if the 
quantity XA [7i] determining the control u[tl = u[‘G~] (Ti < t < ~i+~) were to enter 
the controller with an error, then for the stable operation of the scheme mentioned we 

would need, in certain nonregular cases, a further constraint from below on the step fi of 
the approximation scheme. In this case the constraints of the measurement error in 
2~ [nil may prove to be excessive. The simplest example of such a nonregular situation 

is furnished by the problem of the encounter of a point E [t], moving along the straight 
line - c*) < < < 03 and described by the equation 

5’ = U - V, IuI<2a, IvKi (4) 

with any of two points L$ (‘) = -1, jc2) = 1. The problem is solved by the control 

u (E) = 2 when E > 0 and 7~ (k) = -2 when g < U. However, when we pass to the 
descrete scheme, in the case when the quantity E, [zi] is introduced into the control 
u tt1 = u (5 [Til) (Ti q t < Ti+J with an error A5 which can exceed the amount a = 
l/Z b = I/z Sllpi (ti+l - xii), the point 5 it] can get trapped in a neighborhood of the point 
E = 0. 

The purpose of the present note is to indicate a small modification of the approxi- 
mation scheme mentioned 12, 31 for forming the random motions zA [t], which permits 
us to by-pass the circumstance stated. The essence of this modification is that instead 

of the extremal control p., (du; ri, ZA [.ti]) which aims the motion 2~ ]t] at the posi- 
tion {ti, 5~ ]ti]} towards the nearest point W' I+i] of w (.ti, 6), we shall introduce 
a Control pL, (du; TV, xA [Ti], wA [zi]) which aims the motion 5~ ItI towards some also 
sufficiently close point wA[ri] of w (ti, 6), but now not necessarily the point w” [ti] 
of w (ri, 6). closest to z~ ]T;] . Let us describe this control. 

We examine two motions. The driven motion 5~ [t] in the given actual controlled 
system, described by Eq. (1). and the driving motion WA [t] produced by a precision 
model of suitable degree and described by the equation 

In accordance with the problem statement the control u in Eq. (1) is prescribed by the 

first player and the control u , by the second player, In Eq. (5) both “controls” p and Y 
are prescribed by the first player. Thus, we describe the construction of the control u [t] 

for the motion 2A ]t] and of the controls p.! (du)and vL (6%) for the motion w ]t]. 
Suppose that for a given initial position {to, x,} we have succeeded in finding the 

stable bridge W(a), containing this position, lying in N and terminating on M at the 
instant t = 6. Having chosen the partitioning A : [TV, i === 0, 1, . . _ ; -c,, = to] 

of the semiaxis It,,, oo), we form the two motions x~ [t] and WA [t] in the following 
manner. At the initial instant t = t,, _-- ~~ we set WL, It,,] = 5~ It,,] -:- x0 and we 
choose the control u [t] = u[rO] F: P arbitrarily on the half-open interval ]z,, ti) . 
We choose the measure Y (do; ‘to) arbitrarily, normed on Q, and we determine the 
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mixed program control pt (du; ‘CO) (TV < t< ‘cl) such that for the motion WA \tl 
satisfying the eqaution 

wb It] =SS~(t,wA[tl,~,v)rr,(~u;t,)v(rlu,t,) 

(WA [toI = x0, To Gt < %) 

one of the conditions 

{%l WA [Tll} E w(" 

Or 

(6) 

(7) 

u [{t?wA[[tl}, ~O<t&~linM## 

is fulfilled. The possibility of choosing such a control pt (du) follows from the condi- 
tion for the stability of bridge Wle). We note that in Cl] the stability condition implies 
the existence of a motion w [t] satisfying the contingent equation 

w’[tl F=co LC f(t,wltl, u, 4 v (du; t,); z.5 E P] (8) 
6 

and one of the conditions (7). However, it can be shown that by an appropriate defini- 

tion of the class of mixed program controls pt (du) (see [43) every solution of the con- 

tingent equation (8) is a solution of an equation of form (6). 
Now suppose that at the instant t = ‘pi (i = 1, 2, . . .) we have realized the 

points XA [z~I, WA LT~] , and that the driving motion WA [t] for t,, < t < 7f has not 
hit onto set flf. Suppose that information on the realized value 5~ [.til has been fed 
into the first player’s controller in the form of a signal tA* [zi] related with the value 

XA lzi] by the inequality 
j/xA [ril - zA* [til /<ii (9) 

We construct the vector s = xA* [.til - WA [‘til and we consider a small game in 
which the quantity s’f (TV, zA* [TJ, u, v) (the prime denotes transposition) serves as 
the cost, i.e. we consider the problem of determining the measures /k’(dU; ‘Ci) and 
v”(dv; zi) which satisfy the condition (see Cl]) 

s\ ( 
' 's'f ri,xA* [ri],u, v)~"(d&~i)v(du)< 
Ph 

5s 
df(ri,xA* [<i],u, v)~"(d%Zi)Yo tdu; 'i)< 

PQ 

ss 
S'f(Zi,XA* [Til$ uy u)p(du) VO('u; 'i) W) 

PO 

We choose the control f.~ (du; ri) (‘Gi < t < ‘Ti+l) such that one of the two conditions 

Or {T, zt17 WA hi+lj} E WC') 

,_, [{t, WA [tl};l 7i < t < zi+ll n IM =/= @ 

is fulfilled for a motion WA it] satisfying the equation 

(11) 

wA'[t] =sstk WA [t],u, U)Lkt(iU;~i)~"(d~; .ti) 
PQ 

As above, the possibility of choosing such a control p1 (du; pi) follows from the condi- 
tion for the stability of the bridge IV(#). We choose the control 
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u ]t] = u ]ril (ri < t < ‘ri+i) for the motion zA [t] from the result ofa random ex- 
periment with probability distribution l.t” (~zL; ‘ti>. 

The described approximation scheme for choosing the first player’s random controls 
7.L Lt] = U [ri] (ri < t < ri+i, i = 0, 1, . . .) is realized in system (1) in pair 
with an arbitrary deterministic or random control of the second player. Here it is 
assumed that the realizations of controls u [t] and ZJ [t] are stochastically independent. 
The presence of measurement error in the phase vector zA [t] can serve as the physical 

premise for such an assumption. Indeed, if the error estimate, namely, the number 5 for 
the second player, is greater than the quantity ?~6, where h is a Lipschitz constant and 

6 is the step in the approximation scheme being considered, then the second player is 
not able to reestablish the piecewise-constant control chosen by the first player. We note 
that the controls u ItI = u [nil (-ci < t < T~+~) are also chosen independently of the 
control 0 1 t]. If the distributions of the error h r are considered, these arguments can be 

framed in rigorous concepts. The following assertion is valid. 
Theorem. Whatever be E > 0 and p < 1, we can find arbitrarily small num- 

bers GE, P > 0 and 6E,p > 0 such that when the inequalities 5 < SE, P and 6 < 
6 E, p are fulfilled for the motions XA[ t] , contact with the ~-neighborhood of M inside 
the &-neighborhood of N at the instant 6 is guaranteed with a probability not less than 

P* 
The approximation procedure described above corresponds to the theoretical con- 

structions which were presented in [l, 21. The theorem id proved by the plan proposed 
in these papers, with this difference that here we estimate not the distance from zA [t] 
to the set w@) or M but the distance from 5~ ltl to the point WA ]t] which, moving 

along the bridge W(a), inevitably hits onto M for t < 6. 

If at every position {t, X} and for every choice of vector s the small game (10) has 
a saddle point in the pure strategies ZL” and PJ”, i.e. the equality 

min max s’f (t, .t, u, v) = max min s’j (t, z, U, U) (12) 
UEP vex! UEQ ILE-1 

is fulfilled for all values of t < 6, x and s , then the motion 2~ [t] is obtained as de- 
terministic, and the Theorem’s assertion on the contact of 2~ lt] with the E -neighbor- 
hood of &f inside the &-neighborhood of N for t ,tS reduces to the fact that this con- 

tact will take place with certainty. In this case the assumption of mutual independence 
of the player’s choice of controls can be dropped and such methods of forming 2! are 
allowed the oppronent, which use information of the first player’s realized control. 

If, however, we are required to find a deterministic solution of a position encounter 
problem in the case when equality (12) is violated, then, in accordance with the results 
in [5, 63, we can suggest the following modification of the approximation procedure 
described above. Suppose that for a given initial position {to, x,} we have succeeded 
in finding a minimax u-stable bridge (3) (see [6Sg). At the initial instant t = t,, we 

set x~ [t,] = w1 [t,] = x,,. We assume that the point {t, WS. it1 } has not hit onto set 

M for t E [t,, ai] , then, for constructing the motions zA [t] and WA [ tl for ti < 

t < Tit1 I we proceed as follows. We construct a vector s==xA* [ri] - wA [TV], where. 
as above, zA* [ti] is the signal of the vector xl [ri] fed to the first player. We con- 
sider a small game in the class of pure strategies u tG &’ and counterstrategies 2) (u) E 
Q, i.e. we determine the vector ILO [rt] E P and the vector-valued function v”(u; ti) 

satisfying the condition 



Approximation In a differential game 189 

We define the driving motion WA [t] for 7i < t ( Ti+l as the solution of the con- 
tingent equations wA. [tl ~ 

co If (t, WA [t] u, u” (u, q)), u E PI 

satisfying one of conditions (11). The existence of such a motion follows from the con- 

dition of minimax u-stability of bridge Wee). The driven motion 2~ ltj for Zi ,( t < 
~i+~ is generated by the constant control u it] = u” [T~J and by a certainrealizationot 

the second player’s controlling action. Here the formation of control z, [ t] which uses 

the information on the control u [t] realized, is also allowed. 
Now an assertion analogous to the Theorem is valid once again, i. e. all motions z~,[tl 

constructed by the method indicated, encounter the c-neighborhood of M inside the E 

neighborhood of N at the instant 6 for sufficiently small 5 and 6 _ 
We note that when i = 0 the vector s coincides with the measurement error of 

vector IA l&,1, i. e. s=zA* 1 t,,] - xA [to], therefore, just as in the preceding case, 
the control u” [z,l E P can be chosen arbitrarily. In isolated cases the formation of 
control u by the scheme described can lead to very easily realizable procedures for the 
control. 

For example, let us consider the problem of the evasion (see [7], pp. 328-342) of one 
motion z (t) from another motion Y It] in the case of linear objects of the same type 

y’ = AY + u, uEP 

z’ = AZ + v, UEQ 

where the convex sets P and Q are similar and P is larger than Q. The contact of 

the motions is defined as the fulfillment of the condition (y it] - z [TJ) E S, where S 
is some given closed set. The given problem of evasion up to an instant’ 6 can be trea- 

ted with an interchange of the symbols u and u as the encounter problem considered 
in this paper if as M we take the hyperplane t == 6 and as N , the complete halfspace 
{t, Z} = {t t y - z} for t < 6 less a certain suitable open region containing the set 

{t < 6, (y - Z) E S}. It then turns out that the control u = v [ti] E Q for the real 
motion xA [t] = y [t] - zA [t] is determined by the condition 

(zA* [Zil -- tc’A [zil)’ u[z,l = maxOEg (zA* [TJ - wA [ti])‘v (13) 

while the controls uw [TV] and v,,, [.tJ for the model motion wA [t], which satisfies the 
equation 

WA’ [t] = ‘4WA [t] + uw - VW 

are determined bv the conditions 

(zA* [Zi] - UJA [ZJ) N zu [zil z= maxuEp @A* [zil - we [‘il)’ u 

2‘w If,1 = Pu, IT{1 (15) 

where fi is the ratio of the dimensions of set Q to the dimensions of set P. 
These conditions have the following simple meaning. Condition (13) aims the real 

point xA [nil at the model point UJ~ [Q], while conditions (15) ensure only such reali- 
zations o Itl of the control D = I(~. - 2’ which are contained in the set (0 - 2) Q. 
But, according to n], under such control:the point luA I tl from (14) cannot encounter 
the target S earlier than at the instant 6 which is the optimal pursuit time for the 
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given initial position. 

As another example we consider the problem of evading the state tl = x2 =: 0 for 

the system described by the following equations ~8): 

21 
’ .- - x3, x3 * = 111 cos w3 - 142 Sill Va - C1 COS !.iQ ,-I- Vz Sin u3 

$2 * = X4, X4’ --‘ Ml sin U3 + ua COS I+ - u1 sin u8 ,_- vz C0S ug 

ai2 + u2’ < ri2, Vi2 + lj2’ < rza, I%l<% 1h3IGB (16) 
3% < d% B < x12, II cos (I > rz cm a 

Relying on the material from [8] we can convince ourselves that the best method of eva- 

sion for the given probIem in the control scheme described in the present paper is deter- 

mined by the fallowing conditions : 
for the real motion X~ It] 

Here it is assumed that rl > r, cm a. 

Other examples of the effective use of the approximation procedure described are 

furnished by the cases when the stable bridges W(*) can be constructed sufficiently 

simply on the basis of IS]. As an illustration of this situation we can consider the solu- 

tion of the problem of damping a mathematical pendulum on which acts the force 

F = Z&i + (F.+ - v)Z - I, irflf<‘l. /z%?I<,‘, 1 vi<* 

The realization of the approximation in the given problem, described by the ecluation 

Xl . -_ Q, x2’ == -q -t_ UI + (IL? - II)% -1 1 
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- 0.8 - D. 4 -0.2 l? 

Fig. 1 

dashed line represents the motion w3, [t]. 

Figure 1 shows one of the sections of 

the approximate motion “A [t], the step 
b; = ti+l - ‘ti is equal 0.01. the con- 
trol v [t] is chosen in the following 

manner: v=ufors2>0,V=fl 
for s2 < 0, the values +l and - 1 
are chosen with equal probability ; the 

The authors deem it necessary to note that for nonregular cases similar to that descri- 

bed above for problem (4), when the point WOE W (t, 6) closest to xA ItI is nonunique, 
it is necessary to replace, in their paper [ll], the procedure described therein for COIIS~NC- 

ting the random motions zA [t, l,,, x0, Uo] by the procedure proposed in the present paper. 
In conclusion we must say that the described scheme of control with a guide ~[t] joins 

the theory of strictly position differential games with the theory proposed by Pontriagin 
(see [12 - 141). Both approaches merge into a certain combining stable control scheme 
based solely on information on the realized states x[t] of the controlled object. 

reduces to the following relations : 
for the real motion 

U1 [Til = -1, u2 [TJ = 0 
if s2 Iti1 > 0 
u1 [TJ = 1 

if s2 ISI < 0 

where s2 f~il=~~,, [nil - wA,z [GI; 
for the model motion wA it], 

described by the equation 

the control IJ [t] is formed in corre- 
spondence with the known solution of 
the problem of optimal damping of a 

mathematical pendulum (for example, 

see [lo], pp. 34-42). The point wA [t] 
actually moves along a u-stable path 

w (Qfurnished by this solution, 
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We examine a linear pursuit problem under conditions of local convexity [ 11. 
We derive the necessary condition for the optimality of the time of first absorp- 
tion at all points of the space (global optimality). General sufficient conditions 

for the optimality of the pursuit time have been given in [2, 31. 

1. Let a linear pursuit problem in an n-dimensional Euclidean space R be described 

by : 
a) a linear vector differential equation 

dzldt = Cz - u + 21, u = u (t) E P, u = u(t) EQ (1.1) 

where c is a constant square matrix of order n, u and u are vector-valued functions, 
measurable for t > 0 , called the controls of the players (the pursuer and pursued, res- 

pectively), P c R and Q c R are convex compacta ; 
b) a terminal set M representable in the form M = M,, -t W,, where -11, 

is a linear subspace of space R, w, is some compact convex set in a space L being 
the orthogonal complement of M, in R . 


